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Abstract
Criteria are presented that permit a straightforward partition of experiments into sets that can be
modeled using both quantum probability and the classical probability framework of
Kolmogorov. These new criteria concentrate on the operational aspects of the experiments and
lead beyond the commonly appreciated partition by relating experiments to commuting and
non-commuting quantum operators as well as non-entangled and entangled wavefunctions. In
other words the space of experiments that can be understood using classical probability is larger
than usually assumed. This knowledge provides advantages for areas such as nanoscience and
engineering or quantum computation.

1. Introduction

Quantum mechanics, taken as a probability theory, presents us
with a number of results that appear to be mysterious when
discussed in terms of a classical probability theory such as the
framework of Kolmogorov. Nevertheless, as quantum concepts
penetrate engineering and technology, it certainly is interesting
to investigate the applicability of classical probability. Modern
nanostructure research does present us with the desire to
explain to students the possible limitations to apply the
probability theory that they have learned (e.g. from the work
of Shannon in courses of information theory) and what type
of experiments can and have to be understood exclusively
by quantum probability. Considering the appearance of
‘negative classical probabilities’ for well known quantum
experiments [1], this seems to be a tall order. Detailed
reflection reveals, however, that the difficulties arise mainly
from interpretational issues and not from the mathematical
theories themselves. Both quantum probability as formulated
by von Neumann and Kolmogorov’s probability are well
proven frameworks with well defined relations to actual
experiments.

Quantum mechanics relates to the experiments by both
preparation of a quantum entity and by the actual measurement
of that entity with some equipment resulting in an indicator
reading. Kolmogorov’s probability theory relates to the
experiments by the definition of a probability space. The
author found that most of the difficulties in the use of
both frameworks disappear with the introduction of different

probability spaces as follows. We certainly need to admit
different probability spaces in the Kolmogorov framework
when we describe different preparations of a quantum entity.
However, we also need to admit different probability spaces
for different macroscopic arrangements of the measurement
equipment. While this latter requirement is natural from the
modern point of view that the results of the measurements
are also determined by quantum processes in the measurement
equipment, it does not agree with the usual convention of
describing the equipment by some idealization of perceptions
of the observer i.e. by idealized sense impressions. For
example, a polarizer is just described by some unit vector and
rotation of the polarizer just rotates the vector, nothing else.
Yet it is clear that the polarizer has to be seen in a consistent
theory as a many body system that interacts with the measured
quantum entity and may by itself require probability concepts
to describe this interaction effectively. Consider the scattering
of electrons by two neighboring nanotubes (the ‘positive’ of
the two slit experiment). Even if we think of the tubes only
as coupled classical antennas, the scattering must be described
by a Kolmogorov space very different from that obtained by
adding the effects of two single nanotubes. A great discussion
of probabilities for the two slit experiment from a purely
mathematical view has been given by Khrennikov [2]. It is the
thesis of this paper that the postulate of different Kolmogorov
probability spaces for both different preparations and different
macroscopic measurement configurations provides a means of
using both quantum and Kolmogorov probability for a given
science problem without contradictions. This fact, although
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it may at first glance raise some doubts, becomes trivial
as soon as one realizes that naturally we can explain any
measurement of a pointer reading of any given experiment by
use of a specially constructed probability space. However,
the advantage of Kolmogorov’s framework (such as the use
of all its theorems) can be enjoyed only if we can describe
large sets of experiments and measurements on one common
(though abstract) probability space. Therefore, in order to
use the advantages of Kolmogorov probability, we need to
know when we can concatenate any sequence of quantum
experiments on one common Kolmogorov probability space.
The answer to this question is, unfortunately, mathematically
so complex that it goes beyond the partition into experiments
corresponding to commuting and non-commuting operators
and involves combinatorial-topological concepts. Because the
author wishes to present this paper in a volume to honor
the experimental work of Dr G Bauer, he has attempted a
presentation that will appeal to experimentalists with the hope
that he has not compromised with respect to mathematical
rigor.

The reader who wishes to penetrate deeper is referred
to the general references [1, 3] and is also assumed to have
some familiarity with the work of Bell [4] and experiments of
quantum optics and Einstein–Podolsky–Rosen (EPR) [5] types
of experiments such as that of Aspect and others [6]. Basic to
the development of the mathematical point of view presented
here is the work of Fine [7], Pitovsky [8], Khrennikov [9] and
Hess and Philipp [10] and especially the work of Vorob’ev [13]
that actually precedes that of Bell [11] and contains the
very complicated combinatorial-topological basis for our main
results.

2. Combining quantum and Kolmogorov probability
theory

We define in this section, by use of operational concepts (see
e.g. [14]), sets of experiments that can be modeled by both
quantum and Kolmogorov probability (QK sets). Our emphasis
is on the experiments themselves and we avoid to use notions
such as commutation or non-commutation in the definition
of QK sets because such notions would give ‘preference’
to the axioms of the quantum probability framework. Only
operational concepts are used. This means we attempt
to use only the relationship to the actual experiments that
both probability frameworks demand. The possibility of
describing certain experiments by both probability frameworks
can be found in textbooks (see e.g. [1, 15]). However,
quantum entanglement and non-commutations are usually
presented as show-stoppers for the use of the combined
framework. We attempt here to present clear borderlines and
we show that certain sets of experiment can still be modeled
a la Kolmogorov, in spite of the fact that their quantum model
involves entanglement and non-commuting quantum operators.

The use of the word probability amounts to an admission
that there are some phenomena involved that we can not
easily control and influence or even understand in principle.
Nevertheless we need to link these phenomena to actual
experiments to logically deal with them. We therefore need to

introduce an element into the respective theory that is linked to
the elements of the ‘real world’ (if this expression is permitted)
but has no completely defined meaning in that real world.
The quantum wavefunction has no direct meaning in terms
of sense impressions (see e.g. [1, 15]) and the same is true
for the elements of the abstract Kolmogorov sample space of
which one must be chosen by Tyche (the goddess of fortune) to
‘crystallize’ something ‘into existence’ [3]. Our main point is
that we endow the probability space with a general dependence
on both preparation of quantum particles and macroscopic
equipment arrangements.

2.1. Consistent random variables and probability spaces

The sample space � [3] relates Kolmogorov’s framework to
the actual experiments and represents the set of all possible
outcomes of the experiments in a mathematical way. It is
abstract and general but must correspond to all the Machian
sense impressions related to the experiments in a logical way
and without contradictions in order to make probability theory
a scientific tool, a ‘pre-statistics’.

Consider, for example, photons propagating toward a
polarizer. If the photon traverses the polarizer we say that
we have measured a ‘1’ if we do not measure a thing we
say we have a ‘0’. Thus the possible outcomes are 0, 1.
However, each of the experiments involves many factors. A
physical description of a given experiment includes the actual
propagation of a photon, the geometrical arrangement of the
polarizer(s), the temperature of the equipment and other factors
that may or may not be known. To consider all of these
factors in a logical fashion we need to relate experiments to
abstract ‘indecomposable’ elements ω [16] of the sample space
� (also referred to as ‘elementary events’ [1]). An actual
outcome is then ‘crystallized into existence’ by Tyche’s choice
of a particular element of the set � that is often denoted by
ωact [3]. We also wish to include into our considerations
composite experiments i.e. experiments performed in many
stages e.g. sequences of two coin tosses with the possible
outcomes H H, H T, T H, T T where H stands for head and
T for tail. Things become demanding if we deal with
possible ‘hidden’ effects such as magnetic substances in the
coins and hidden magnets that influence them. Then a very
careful treatment of the sample space is necessary to avoid
contradictions.

We consider here, for reasons of physical clarity, only
countable sets �. To complete a Kolmogorov model, further
steps are needed. One introduces a probability measure
P(�) = 1 which assigns to each event (subset of �) a
real number of the interval [0, 1]. We then have formed
a probability space (�, P). Random variables are real
valued functions on that probability space. We may link
the random variables, and do so below, to the possible real
valued experimental outcomes such as the discrete (because of
assumed countability) eigenvalue spectrum of certain quantum
operators and corresponding experiments. For example, we
may label the random variables by some physical property
of a polarizer or Stern–Gerlach magnet (and corresponding
quantum operator) that is used in a spin related experiment
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and select the range of the random variable (function)
corresponding to the two possible spin eigenvalues. This is
what is usually done. We add here the possibility to change the
probability space on which the random variable is defined if we
change macroscopic settings e.g. the direction of the magnets.

It is important to note that in the Kolmogorov framework
Tyche must choose from one given probability space (�, P)
and that her chosen ωact must correspond to the known
facts of a given experiment such as the propagation of
a photon toward a polarizer with given setting. If we
consider experimental sets with very different experimental
arrangements and in addition construct certain given random
variables associated with them, then Tyche may not be able
to choose consistently from one probability space as will be
shown below (see also [17]). Consistency of joint probabilities
is, in fact, a premise in Kolmogorov’s theorem that assures
the existence of sets of random variables on one probability
space [1]. Therefore one can not postulate that any set of
random variables on a probability space exists and describes
all experiments we wish to describe. In order to describe
different (incompatible) experiments consistently we may have
to model them by different sets of random variables and/or
probability spaces with different indecomposable elements
ω, ω′ or ω′′, . . . and corresponding probability measures
P, P ′, P ′′, . . . of the probability spaces (�, P), (�′, P ′) or
(�′′, P ′′), . . . respectively. This fact is given careful attention
in the following.

2.2. Wavefunctions and operators

The operators of quantum mechanics are also related to actual
measurements and to the classical physics of the equipment
that is used. The results of these measurements are given by
indicator readings and correspond to real numbers [14]. The
operators act on quantum states, represented by wavevectors
|ψ〉 or wavefunctions. The quantum states themselves can
not be defined by use of classical physics and have no
direct physical meaning. Only their ‘preparation’ is described
in classical physics terms i.e. operationally by the use of
macroscopic instruments. Thus, the quantum framework
distinguishes in its definitions and subsequent mathematical
use between experiments that are related to a preparation of a
quantum ‘entity’ and the measurements that assign an indicator
reading after measuring that entity [14]. This distinction
suggests in the language of section 2.1 the involvement of
different sample spaces that somehow need to be united
if we wish to describe both preparation and measurement.
We will see below that, under certain conditions, we can
attribute a ‘collection’ of probability spaces to a prepared
quantum state. From this collection, a particular probability
space is relevant for the measurements that correspond to a
given quantum operator (that in turn corresponds to certain
equipment settings). The choice of this probability space is,
of course, not unique because quantum mechanics does not
specify the sample space. The single indicator reading is
also not the subject of quantum theory which features only
the expectation values of the indicator readings as its main
result. In contrast, the Kolmogorov framework introduces

random variables that are functions of sample space elements
and assume a definite single value for any ωact which, however,
in order to introduce probability is chosen by Tyche. The
determination of the circumstances that permit consistent
definition of random variables corresponding to any number
of quantum operators and/or wave functions on one common
Kolmogorov space is not straightforward and is addressed in
detail in the sections below.

2.3. Quantum Kolmogorov sets of experiments

Here we describe the combination of quantum and Kol-
mogorov probability for very restricted but nontrivial sets of
experiments that we call quantum Kolmogorov (QK) sets. We
emphasize what is important for the combined use of quan-
tum and Kolmogorov probability, particularly the proper con-
nection of the probability space and random variables to the
actual experiments as well as the possibility of using more
than one probability space for sets of distinctly different ex-
periments. What we use from the framework of quantum
theory are the concepts of quantum states |ψ〉 and operators
â, b̂, ĉ, . . . that act on these states and have real eigenvalues
Eâ

N , Eb̂
L , Eĉ

S, . . .. As mentioned, to avoid mathematical com-
plexities, we assume a countable number of eigenvalues. Then
we have N, L, S = 1, 2, 3, . . .. We do include the use of ten-
sor product states and operators as defined in all texts and point
the reader to [1] and [15] for details. Before giving further dis-
cussions we start with an important operational definition.

Definition of a QK set: Any set of experiments is defined
as a quantum Kolmogorov (QK) set if and only if (i) actual
measurements correspond to at most two indicator readings
of a given measurement configuration that is assembled at
the start of all measurements of the set in ‘identical’ fashion.
‘Identical’ is defined by the classical physics that affects the
instrument indicators, (ii) the entities that are measured are
identically prepared in textbook fashion [14] and correspond
to at most two (quantum) particles and (iii) each indicator
reading is taken for precisely one prepared (quantum) entity.

This definition of experiments is typical for definitions in
quantum texts and clearly covers the relationship of quantum
probability to experiments. The fact that it also covers
Kolmogorov probability is contained in the limitation of the
numbers of both measurement and preparation to two with
fixed measurement settings.

We will show that a QK set of experiments as just defined
can always be modeled by the use of both the quantum and
Kolmogorov (combined) probability framework. We will also
show that the combined framework can be used for certain
unions of QK sets that relate to large numbers of random
variables as well as quantum operators, even non-commuting
operators and entangled wavefunctions, as long as certain
experimental and mathematical conditions are fulfilled.

Note that the above definition of a QK set encompasses
nontrivial quantum experiments such as the Aspect experiment
for one pair of equipment settings. In this experiment,
entangled pairs are propagating to the polarizers and their
transmission or non-transmission is measured on each side.
A set of such experiments is a quantum Kolmogorov set if
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and only if the polarizers on each side are arranged during
the course of each measurement of the entire set in a given
way. Between the measurements of the given set other
polarizer settings may be chosen. For the Aspect experiment,
the quantum operator corresponding to such a set is a tensor
product operator of two (different) spin matrices. The quantum
entities (entangled pair) are prepared in a Bell state. Of
course, any other state(s) corresponding to a well defined
preparation of at most two quantum particles are permitted
by the above definition. Clearly such experiments can be
modeled successfully by quantum mechanics. As we will
see, the outcomes of such experiments can also be modeled
a la Kolmogorov by use of two random variables on one
probability space (proven in the lemma below). It was pointed
out to the author by Khrennikov that also the well known
‘firefly in the box’ (thought) experiments [18] follow the above
definition and can be collected into QK sets. These thought
experiments have assumed a special importance in the area
of quantum logic. Experimental results of interferometers
such as that of Michelson and of Mach–Zender can also be
collected in QK sets. The proof for this is already contained
in texts such as [19] if we only include the postulate that
the probability space describing a given experiment changes
due to any macroscopic rearrangement of the measurement
equipment (e.g. the introduction of an obstacle into the path
of an interferometer), and that furthermore a common abstract
probability space may not exist for all the possible variations
of equipment change.

The union of arbitrary quantum Kolmogorov sets may be
but does not have to be a quantum Kolmogorov set. Therefore,
we must use, at least in principle, a different sample space
and corresponding probability space for the modeling of each
different QK set. For example for a set of measurements
corresponding to some equipment settings described by the
operator â operating on any given state |ψ〉 we define sample
space elements ω of the sample space � and we define
a probability space (�, P) with P(�) = 1. We also
define random variables to describe the possible experimental
outcomes for the given equipment settings. The values that
these random variables can assume are the eigenvalues of
the quantum operator related to the equipment settings. Any
possible measurement outcomes of a QK set are then described
by a random variable of the form:

Eâ
N (ω) (1)

which is a function on the probability space (�, P). The
quantum number N = 1, 2, 3, . . . can also be seen as a random
variable on the same probability space. Tyche’s choice of an
ωact crystalizes then the measurement result into existence. For
example we may have Eâ

N (ω
act) = Eâ

1 = +1. If we change
to different experimental settings we introduce a different
probability space �′, P ′ that now corresponds to a different
operator, say b̂. We describe the possible experimental
outcomes of this set by:

Eb̂
L(ω

′). (2)

The probability space is chosen in such a way as to fulfill
the following equation for the quantum expectation value of

|ψ〉 with respect to the measurement set corresponding to the
operator â [20, 1]:

〈ψ|â|ψ〉 =
∫
�

Eâ
N (ω)P(dω) (3)

and similarly for b̂

〈ψ|b̂|ψ〉 =
∫
�′

Eb̂
L(ω

′)P ′(dω′) (4)

etc. Here we have used the standard notation of probability
theory for Lebesque integrals.

In this way we can subdivide in essence all the
experiments related to quantum (as well as classical) physics
into sets that can be modeled a la Kolmogorov, however, each
on a different Kolmogorov space. The interesting question is,
of course, whether unions of these sets can also be modeled
on another single Kolmogorov space e.g. a product space.
Furthermore there are questions whether we can deal with
quantum entanglement that way.

3. Entanglement, Bell and Vorob’ev

The objection can be made that there are problems when
attempting to model or even understand quantum mechanics
by using random variables on a Kolmogorov space whenever
quantum entanglement [15] is involved. Therefore we need
to investigate the mathematical basis of the no-go proofs
of Bell and others. This will lead us to the definition of
closed quantum Kolmogorov (CQK) sets in the next section.
Fortunately, much work has been already done to extract this
mathematical content and we are basing the following section
on the extensive discussion in [10, 20].

3.1. The mathematics related to Bell’s no-go proof

Instead of the general Eâ
N (ω) etc from above we now consider

the results of EPR experiments in the notation of Bell [11]
i.e. the spin measurement outcomes Aa((·)), Ab((·)) = ±1
in a measurement station S1 and Bb((·)), Bc((·)) = ±1 in a
second station S2 with corresponding tensor products of Pauli
spin matrices σa, σb, σc. Here (·) indicates an element of an
appropriate sample space that can be different for different
experiments. This represents a slight generalization to Bell’s
parameter λ representing elements of reality whereas (·) can
be chosen by Tyche. One portion of an entangled pair is sent
to the respective stations where the results are registered at
certain measurement times t j as measured by a clock in the
reference frame of the stations (assumed for our purpose here
to be identical) and collected.

We first prove that compatible (i.e. not mutually exclusive)
EPR experiments may be concatenated on one probability
space and form a QK set. We use, as Bell did, the relation
Ba(ω) = −Aa(ω) just for the sake of an efficient presentation.

Lemma. For one given setting in each of the two stations,
and thus for a given set of QK experiments performed at
measurement times t j in the given reference frame of the two
measurement stations it is possible to find a single abstract
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probability space on which the functions A, B = ±1 can be
defined and to obtain the pair expectation value prescribed by
quantum mechanics.

Proof. The goal is to obtain the quantum mechanical pair
expectation M(Aa(ω)Ab(ω)) [11, 14]:

M(Aa(ω)Ab(ω)) = −〈ψB |σa ⊗ σb|ψB〉 = a · b (5)

where ⊗ denotes the tensor product and |ψB〉 is the Bell
wavefunction given by:

|ψB〉 = 1√
2

((
1
0

)
⊗

(
0
1

)
−

(
0
1

)
⊗

(
1
0

))
. (6)

The following joint probability measure results in M(Aa(ω)

Ab(ω)) of equation (5) as can be found by inspection
(see [20]):

P(ω : Aa(ω) = (−1)n, Ab(ω) = (−1)k)

= 1
4 (1 + (−1)n+ka · b). (7)

Here k, n = 1, 2. The probability measure so defined is unique
because it is the only measure that also fulfills M(Aa, ω) =
M(Ab, ω) = 0 as required by quantum mechanics [10].
Thus, EPR spin experiments as discussed by Bell and restricted
to precisely one setting on each side, i.e. to compatible
experiments, can be described by one abstract probability
space with elements ω ∈ � that represents both source and
equipment variables. We have for all probabilities 0 � P � 1
and no contradiction of the Bell type follows. Therefore spin
related EPR experiments with entangled pairs do form QK sets
and the question raised about them is answered. �	

Unfortunately these QK sets can not be arbitrarily
concatenated to larger QK sets as can be seen from the
following theorem.

Theorem. Using all the possible magnet settings (with two or
more settings in each station) it is impossible to use without
contradictions the algebra of three (or more) random variables
defined on a common probability space� in cyclical algebraic
expressions such as

Aa(ω)Bb(ω)+ Aa(ω)Bc(ω)

+ Ad(ω)Bb(ω)− Ad(ω)Bc(ω) (8)

and to recover at the same time all possible expectation values
such as M(Aa(ω)Ab(ω)) = a · b, M(Aa(ω

′)Ac(ω
′)) = a · c

and M(Ab(ω
′′)Ac(ω

′′)) = b · c (notice the different sample
space elements for each pair).

The proof below illustrates that it is not the expectation
value itself (as given by quantum mechanics) that leads to
a contradiction. As we have seen from the lemma we can
easily create the result a · b etc by a classical simulation.
The contradiction arises from the involvement of mutually
exclusive experiments and the use of more than two random
variables in cyclical arrangement.

Proof. We present here only an outline of the major ideas
with references to previous work that contain the precise and
complete elements of the proof.

It was shown in [10] that Bell’s inequalities represent
a special case of the more general mathematical framework
of Vorob’ev [13] who showed that ‘..it is not always
possible to construct a vector random variable with given
consistent projections.’ Vorob’ev talks about vector random
variables with one dimensional variables as components.
Vorob’ev’s [13] work gives precise mathematical conditions
for the validity of his statements and theorems and the serious
reader should at least understand theorem 1 of [10] and the first
page of [13]. However, the essence is this:

The pairs of random variables Aa(ω)Ab(ω), Aa(ω)Ac(ω)

andAb(ω)Ac(ω) form a ‘closed loop’ or display some
‘cyclic behavior’ [13]. Then, once the pair distributions
of Aa(ω)Ab(ω), Aa(ω)Ac(ω) are given one cannot choose
that of Ab(ω)Ac(ω) with complete freedom and at the
same time require that Aa(ω), Ab(ω), Ac(ω) are all random
variables defined on one common probability space.

In terms of the algebra of random variables one finds
the well known constraints on the possible outcomes for four
setting pairs:

� = Aa(ω)Bb(ω)+ Aa(ω)Bc(ω)

+ Ad(ω)Bb(ω)− Ad(ω)Bc(ω) = ±2 (9)

that leads to the Bell type inequality � � 2. Thus the range
(codomain) of the function �, which plays a very significant
role in the framework of Bell, is restricted to ±2 because of
the assumption of a single domain for the cyclically arranged
functions. Otherwise we would have � = 0,±2,±4. Without
the cyclicity no contradiction can occur and Kolmogorov
probability can be used as shown in great detail and for general
topologies by Vorob’ev [13]. This fact originates from the
complex demands for the sample space of composite and
incompatible experiments. Tyche is simply not able to find a
single ωact that fulfills all demands including the appropriate
range of functions. Physical explanations (e.g. by quantum
non-locality or by Einstein local means) need not be addressed
here. �	

Summarizing lemma and theorem we can state that exper-
iments involving quantum entanglement can be understood as
quantum Kolmogorov (QK) experiments as long as no cyclical
arrangement of the random variables is involved.

3.2. Non-commutation of the quantum operators and Nelson’s
no-go proof

Nelsons theorem asserts that if non-commuting operators
are involved there exists in general no one to one
correspondence of quantum observables to random variables
of the Kolmogorov framework. We have learned above
that, as far as EPR experiments are concerned, we have no
problems with non-commuting quantum operators as long as
the Bell inequalities or the more general Vorob’ev criteria
are fulfilled. A violation of the Bell inequalities can and
will occur only if non-commuting operators are involved
otherwise no Vorob’ev type problem can exist. This would
be enough to prove Nelsons theorem. There are, however,
other possibilities of the involvement of non-commutation that
are also sufficient to validate Nelson’s theorem and these

5



J. Phys.: Condens. Matter 20 (2008) 454207 K Hess

are related to measurements that change the quantum state
i.e. act like a different preparation of the quantum particles
with further measurements involving the changed state. If
such ‘crosswise’ measurements occur then we do not obey the
definitions of a QK set. Then the involvement of two non-
commuting operators and two random variables linked to these
operators may already lead to a contradiction. This can be seen
from the following reasoning.

Consider measurements corresponding to the operator
combination (quantum observable) [σa, σb]/(2i) where [·]
denotes the commutator and i is the imaginary unit. The
problem is now that there exist |ψ〉 so that the expectation
value of [σa, σb]/(2i) is equal to a positive number δ:

〈ψ|[σa, σb]/(2i)|ψ〉 = δ. (10)

This is ‘difficult to square’ [3], on one common probability
space, with the fact that the product of the random variables
Aa(ω) and Ab(ω) corresponding to σa and σb commutes,
i.e. Aa(ω) · Ab(ω) = Ab(ω) · Aa(ω), while σa and σb do
not. The use of different probability spaces for different
experiments avoids also here contradictions because algebra
involving Aa(ω

′) and Ab(ω
′′) makes no mathematical sense.

If we consider only QK sets and exclude crosswise
measurements between different QK sets, then we can not
incur any operator combinations and corresponding random
variables that carry the problems outlined above. Furthermore,
for spin related EPR experiments we always have:

〈ψB |σa ⊗ σb|ψB〉 = 〈ψB |σb ⊗ σa|ψB〉 (11)

and therefore can not get in any conflict with the relation
Aa(ω) · Ab(ω) = Ab(ω) · Aa(ω).

These facts bring home one of the purposes of the
Einstein–Podolsky–Rosen paper which was to investigate
situations where such crosswise measurements are not
performed and the Uncertainty Principle and the corresponding
‘incompatibility’ of experiments is therefore not as directly
involved. By excluding crosswise experiments EPR did
identify a large number of measurements that correspond
to non-commuting operators as well as preparations of
(entangled) quantum entities and still can be modeled
classically i.e. by the Kolmogorov framework. Of course,
as we also know now, this can only be done as long as no
topological cyclicity of the system of random variables is
involved.

The important corollary of this subsection is that if we
exclude ‘crosswise QK measurements’ we do not need to
be concerned about clashes of non-commutation with the
Kolmogorov framework as long as no closed loop or cyclic
arrangement of random variables is involved.

4. Closed quantum Kolmogorov (CQK) sets

From the above discussions it is clear that QK sets can be
modeled by the combined quantum and Kolmogorov approach
even if quantum entanglement is involved. QK sets contain at
most two measurement outcomes and correspondingly at most
two random variables. Because two random variables can not

form a closed loop, consistency is guaranteed. No problems
with non-commutation can occur for QK sets because they
correspond only to a given experimental setting and therefore
to one (tensor product) quantum operator. We can therefore
use all the tools of the Kolmogorov framework. Results
of Kolmogorov probability have in fact been used without
much justification [3] to assess the statistical significance
of the Aspect experiment and other well known experiments
that involve entangled wavefunctions. Below we develop
and summarize the mathematical and experimental conditions
subject to which also unions of QK sets can be modeled by the
combined framework. Such a union of QK sets is referred to
as a closed quantum Kolmogorov (CQK) set. Closure denotes
here the fact that the union of QK sets can be modeled by the
rules of the combined framework as they apply to the given set
of experiments.

4.1. Well known CQK sets, QK unions that permit use of the
combined framework

It is well known that all experiments and therefore also
all QK sets corresponding to commuting operators and a
given wavevector can be modeled on one common probability
space because commuting operators have a common set of
eigenvectors. We can even form unions of QK sets for
different wavevectors and model them a la Kolmogorov
without contradiction. The reason for this can be found in
the fact that neither an argument involving equation (10) nor
an argument involving closed loops can be made as long
as all operators commute. Commutation is thus certainly a
sufficient condition for the possibility of using Kolmogorov
probability and therefore for forming CQK sets by forming
the union of QK sets. As we will show, however, it is not a
necessary condition for certain restricted sets of experiments.
It is well known, for example, that no Bell type contradiction
can be obtained for EPR experiments that correspond to
commuting operators in one wing only, because experiments
corresponding to commuting operators can be seen in essence
as experiments with identical equipment settings. This means
that no closed loop can be involved in this case.

For experiments corresponding to tensor product wave-
functions and tensor product operators of the quantum frame-
work one can, by assuming independence, also construct corre-
sponding product probability spaces for Kolmogorov’s frame-
work and thus form CQK sets. Therefore no contradictions can
be obtained also in this case even if the experiments correspond
to different wavefunctions and non-commuting operators be-
cause of the assumed independence that permits the formation
of product measures on the Kolmogorov side. Crosswise mea-
surements are, of course, not considered here. The experiments
covered in this way do not include all possible QK sets because
of the restriction to tensor product wavefunctions. The ques-
tion arises therefore whether operational and/or mathematical
conditions exist that permit the use of the combined framework
also for unions of QK sets that correspond to non-commuting
operators and entangled wavefunctions. A positive answer to
this question is given in the next section.
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4.2. Closure of unions of QK sets with entanglement: ECQK
sets

What we summarize here is that with the provisions
concerning the union of QK sets, as they are given in the
next definition, also non-commuting quantum operators and
entangled wavefunctions may be involved in the unions of QK
sets that still can be modeled by the combined framework and
we call them entangled closed quantum Kolmogorov (ECQK)
sets. By the definition of QK sets and the rules for forming
unions as given in the definition below crosswise experiments
are automatically excluded.

We define ECQK sets by:

Definition. Any union of QK sets corresponding to a given en-
tangled wavefunction (to given entangled wavefunctions) is an
ECQK set if and only if (i) any questions regarding measure-
ment sequence are either irrelevant or can be accommodated
consistently in both the quantum and Kolmogorov framework
and (ii) there arise no contradictions involving closed loops of
random variables.

Note that this definition, in contrast to that of QK sets,
is not operational. The reason for this is a natural one: a
general closure condition must refer to the mathematical rules
of both quantum and Kolmogorov probability. The quantum
framework is and always has been used to model unions of QK
sets. The conditions for which it is possible to model ECQK
sets by the combined framework can therefore be deduced from
the conditions under which the set of all random variables of
the ECQK set can be consistently defined on one common
probability space which they can be if no closed loops in the
topological sense of Vorob’ev are involved.

For the special case of spin related EPR experiments for
which the random variables assume only values ±1 the work of
Bell (and the earlier work of Bass [12]) provide a very practical
way to determine the precise limitations for forming a ECQK
set of QK experiments. As shown in [10] and outlined above,
a set of spin related EPR experiments with random variables as
used by Bell can be modeled on one Kolmogorov probability
space if and only if no Bell type inequality is violated. We
can therefore concatenate the QK sets of spin related EPR
experiments that fulfill all Bell inequalities to form an ECQK
set. This also completes our existence proof for ECQK sets.

5. Conclusion

Thus we conclude that classical Kolmogorov probability may
be used to model problems related to quantum mechanics
as long as certain simple operational and mathematical-
topological conditions are fulfilled. This permits the
advantageous use of an additional proven and extensive

framework of probability theory with a firm set-theoretic basis.
Our results clearly show that a general distrust of applying
the Kolmogorov framework to quantum experiments is not
warranted. The advantages of the combined use certainly
justify painstaking investigations of the precise borderline
between these two frameworks particularly in the areas of
nanoscience and technology and quantum optics which are
related to quantum computing and cryptography.
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